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Electrochemical-Memristor-Based Artificial Neurons and
Synapses—Fundamentals, Applications, and Challenges

Shaochuan Chen, Teng Zhang, Stefan Tappertzhofen,* Yuchao Yang,* and Ilia Valov*

Artificial neurons and synapses are considered essential for the progress of
the future brain-inspired computing, based on beyond von Neumann
architectures. Here, a discussion on the common electrochemical
fundamentals of biological and artificial cells is provided, focusing on their
similarities with the redox-based memristive devices. The driving forces
behind the functionalities and the ways to control them by an
electrochemical-materials approach are presented. Factors such as the
chemical symmetry of the electrodes, doping of the solid electrolyte,
concentration gradients, and excess surface energy are discussed as essential
to understand, predict, and design artificial neurons and synapses. A variety
of two- and three-terminal memristive devices and memristive architectures
are presented and their application for solving various problems is shown.
The work provides an overview of the current understandings on the complex
processes of neural signal generation and transmission in both biological and
artificial cells and presents the state-of-the-art applications, including signal
transmission between biological and artificial cells. This example is
showcasing the possibility for creating bioelectronic interfaces and integrating
artificial circuits in biological systems. Prospectives and challenges of the
modern technology toward low-power, high-information-density circuits are
highlighted.
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1. Introduction

Semiconductor electronics is indubitable
the most understood and well-modeled
technology of our time and revolutionized
our everyday lives. The most prominent
example of the success of electronics is
the metal–oxide–semiconductor field-effect
transistor. Semiconductor devices and their
high-performance in information process-
ing have been supported by the devel-
opment of super-integration based on ul-
trafine processing technology. Today this
progress still continues in line with Moore’s
law.[1–3] However, in recent years, concerns
and challenges have appeared about the
technical limits of the associated ultrafine
processing and the physical limits of tran-
sistor operations.[4–7] In addition, the von
Neumann architecture of traditional dig-
ital computers encounter significant en-
ergy and time losses for shuttling data be-
tween the memory and processing units
(von Neumann bottleneck).[8] Thus, current
information and communication technolo-
gies (ICT) consume over 8% of the world
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electricity, predicted to increase to over 20% by 2025.[9] To ad-
dress the continuing demand for improved performance in re-
spect on the development of Big-data computing, IoT and AI, a
new qualitative paradigm shift is needed to develop devices with
functions that conventional electronics cannot realize by simulta-
neously reducing the operation energy.[10–13] Solid-state nanoion-
ics enhanced electronic devices are considered to be capable of
providing this qualitative shift.[14–17]

Due to the size and mass of the ions, ionics was initially con-
sidered not to be competitive with conventional electronics. The
vast difference in basic physical properties of ions and electrons
such as size, mobility, relativistic behavior, and available charge
states makes the approaches and conditions for their implemen-
tation in solid-state devices and related technologies apparently
contrasting. However, remarkable advances in nanotechnology
in recent years enabled to control ion transport on the nanoscale,
and even the atomic-scale, and facilitated to fabricate devices that
operate with localized ion transport.[15,17–21] Since these devices
allow operating speeds comparable to conventional semiconduc-
tor devices, nanoionics devices have attracted attention as novel
concepts for the development of information and communica-
tion devices. Functions achieved by skillfully utilizing the very
nature of nanoionics demonstrated the potential to create devices
that are not bound by conventional concepts.

Implementing ionic effects in nanoelectronics has the
prospective to provide significant advantages and new opportu-
nities for modern technology, such as AI or IoT. Ions were found
effective to tune multiferroic properties, superconductor transi-
tion temperatures, interfacial Schottky barriers, bandgaps, and
conductivity in electronic devices.[20,22–26] Chemical and physical
properties of ions can be varied in a wide range by simply using
different species and/or conditions, thus enabling to be adapted
to different demands and applications. Ionics-based devices can
operate in a wide temperature range[27–29] and are mostly resis-
tant against undesirable effects caused by X-rays, cosmic, high
energy(e.g., space technologies, health, etc.).[30] Nanostructured
ionic materials and devices enable crucial advantages, such as
faster reaction times due to shorter diffusion lengths and field en-
hanced kinetics leading to increased velocity of ion movements
(even in insulators) at the nanoscale.[31] Furthermore, ions, in
contrast to electrons, can be kept in small constrictions, as they
cannot tunnel and easily escape. Memristors allow for various ap-
plications such as non-volatile memories, selector devices, neu-
romorphic computing, field programmable gate arrays, sensors
etc.[32–51] They allow for information processing and storage at
the same physical place (non von Neumann computer architec-
tures) and are believed to be the key component for realizing the
dreamed brain-inspired hardware paradigm shift.[11–13,52–56]

Memristors are a prominent example for the amazing fusion
between nanoionics and nanoelectronics. The most important
advantage of using nanoionic memristive devices is their ability
to mimic the functions of biological neurons and synapses and in
more wide sense biological functions. The main reason for this
behavior is the common electrochemical fundamentals. Inor-
ganic nanoionics systems can exhibit similar dynamic processes
as biological systems, and the underlying kinetic and energy
factors that drive the inorganic nanoionics systems have coun-
terparts in biologic systems. For example, it has been demon-
strated that starting from an unstructured state, the inorganic

system can evolve into an ordered state depending on the exter-
nal stimuli.[18] This process is similar to the self-assembly pro-
cess in inorganic compounds, although we note that in the redox-
based memrisitve systems the self-organization is driven by elec-
trochemical processes at the individual ion level, and are strongly
modulated by external stimuli—in this case electrical pulses. Mi-
gration of ions in these inorganic systems is described by similar
dynamic equations that describe the molecular processes in bi-
ological systems, where different state variables in the inorganic
system can be used to emulate the effects of Ca2+ and neurorecep-
tors in a biological synapse.[23,57–60] These effects were expanded
to network levels in the form of crossbar structures with large
connectivity.[59–68]

Thus, we can safely conclude that artificial systems can exhibit
fundamental properties of life including order, response to stim-
uli, metabolism, homeostasis, growth, heredity, and reproduc-
tion. Underlying similarities between the artificial system and the
biological system are due to the same fundamental background,
such as chemical, electrical, and electrochemical potential gra-
dients, related in dynamical equilibria and being dependent on
additional thermodynamic factors such as temperature and pres-
sure.

Current development and implementation of memristive tech-
nologies, using the unique properties of the nanoionic electro-
chemical systems is fast progressing worldwide. China, USA,
Korea, and Japan are making huge investments in these tech-
nologies. Largest ICT companies such as Intel, Panasonic, HP,
Toshiba, and Samsung are working intensively on products for
the market. Recently the Japanese company NEC as the largest
producer of space satellites has introduced memristive technol-
ogy in their satellites, named NanoBridge-FPGA.[48,69–71]

The physical mechanisms of memristive behavior and applica-
tions of memristive devices as artificial neurons and synapses in
artificial neural networks and as building units for in-memory
computing have been summarized in previous work.[55,72–82]

Here, the fundamental physical chemical mechanisms, device
behavior, and implementation of neuronal and synaptic plasticity
using memristive devices have been introduced in more detail.
Specially, this review aims to present in a comprehensive matter
the fundamentals and basic functions of biological and artificial
neurons and synapses and discuss the driving forces beyond their
operation. The common electrochemical background will be ex-
plained and discussed as the crucial point justifying their iden-
tical behavior and possibilities for control and design. Examples
of the success of practical the implementation of artificial neu-
rons and synapses and even physical connections and signals ex-
change between biological and artificial cells will be highlighted.

2. Working Principles of Biological Neurons and
Synapses

Our modern understanding of how the human’s nervous system
works was first shaped by the serendipitous discovery that nerves
can be stimulated by electricity in the second half of the 18th cen-
tury. It took another few decades until Alan Hodgkin and Andrew
Huxley made groundbreaking contributions to the understand-
ing of how neurons, one of the key elements of our nervous sys-
tem, work in detail by studying squid giant axons.[83] A neuron is
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Figure 1. Basic working principle of a neuron and synapse. a) Schematic of two synaptically connected neurons. The top inset is a zoom into cross-
section of the neuron’s membrane. CNa and CK are the sodium and potassium-ion concentration of the extra- and intracellular medium, respectively.
A voltage-controlled Na+-ion channel is exemplarily shown. The bottom inset depicts a zoom of the synapse between both neurons. b) Zoom into the
synaptic cleft between the pre- and post-synaptic side. c) Schematic of the sodium–potassium ATPase. Between steps (1) and (4) Na+- and K+-ions are
pumped against their intra- and extracellular concentration gradients.

formed by a membrane that encapsulates the intracellular cyto-
plasm (Figure 1a).

Important components within the cytoplasm are the nucleus,
ribosomes, and mitochondria among others. The nucleus is a
large structure with a diameter of a few micrometers, that can
be easily identified by optical microscopy. Its main role is to store
the cell’s genetic information and to control its metabolism via
ribosome biogenesis. Ribosomes and mitochondria can be con-

sidered as microscale biochemical machines, respectively. While
ribosomes perform protein synthesis, mitochondria are the cell’s
internal power plants. The connection between neurons is estab-
lished by synapses, which typically outnumber neurons by three
orders of magnitude. Between the so-called synaptic cleft, infor-
mation is transmitted by electric stimuli and/or neurotransmit-
ters (Figure 1b). In general, these processes involve a transfor-
mation of chemical into electrical energy or vice versa and are
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Table 1. List important ionic species, their concentration and individual
Nernst potentials at room temperature.[84,85].

Concentration
(mmol L−1 in H2O)

Ion species Intracellular Extracellular Nernst potential [mV]

Na+ 12 145 +64.4

K+ 150 4.5 -90.7

Cl− 10 115 +63

Ca2+ 0.0001 1.5 +124.5

Mg2+ 0.5 0.5 0

HCO3
− 10 25 +23.7

H+ 0.0001 0.00004 -24

defined as electrochemical in nature, following the fundamental
laws of physical chemistry.

2.1. Electro(Chemical) Physiology of the Cell Membrane

Biological cells adopted the chemical environment in which life
is believed to originate, namely salt water. The cell membrane
(Figure 1a) separates the extracellular environment with a rela-
tively high sodium and chloride ion concentration from the cy-
toplasm, which contains a high concentration of potassium ions.
There are also other electrochemically active ions found in the cy-
toplasm and environment, such as Ca2+ and HCO3

−. Important
ionic species and their typical extra- and intracellular concentra-
tions are given in Table 1. The concentration of ionic species A in
the cytoplasm (intracellular) is denoted as [A]I, whereas the extra-
cellular concentration of the same species will be denoted as [A]II,
respectively. For example, in Table 1 we find [Na+]I = 12 mmol L−1

and [Na+]II = 145 mmol L−1 in H2O.
The acting electrochemical force is exemplarily considered for

the case of sodium ions. The electrochemical potential �̃�A,i of a
species A (here Na+) on each side i ∈ {I,II} of the membrane is
written as:

�̃�A,i = 𝜇0
A,i + RT ⋅ ln aA,i + zA,iF𝜑A,i (1)

where R is the universal gas constant, F is the Faraday constant,
T is the absolute temperature, aA,i the chemical activity (directly
related to concentration), z is the valence (charge) number, 𝜑A,i is
the electrical potential and 𝜇0

A,i is the standard chemical potential
of species A on side i, respectively. For the particular case, the
activity of sodium ions can be replaced by the ion concentration,
i.e., aA,i ∝ [A]i. This is true for all ion species listed in Table 1.
In addition, at electrochemical equilibrium we define �̃�A,I = �̃�A,II,
corresponding to:

𝜇0
A,I + RT ⋅ ln [A]I + zA,IF 𝜑A,I = 𝜇0

A,II + RT ⋅ ln [A]II + zA,IIF𝜑A,II. (2)

Equation (2) can be further simplified: the charge number z
and standard chemical potential of the ionic species A are equal
on both sides, i.e., zA,I = zA,II = zA and 𝜇0

A,I = 𝜇0
A,II . Rearrange-

ment of Equation (2) leads to:

zAF ⋅
(
𝜑A,I − 𝜑A,II

)
= RT ⋅ ln

(
[A]II

[A]I

)
(3)

Equation (3) demonstrates that the chemical and electrical
force are in balance, where each change in the concentration of
one component results in a change in the electrical potential dif-
ference and vice versa. The electrical potential difference between
the extracellular and intracellular 𝜑A,I − 𝜑A,II is referred to as the
equilibrium potential Δ𝜑A for a specific ionic species A. By re-
placing 𝜑A,I − 𝜑A,II with Δ𝜑A we obtain:

Δ𝜑A = RT
zAF

⋅ ln
(

[A]II

[A]I

)
(4)

Equation (4) is also known as the Nernst equation.[86] For ex-
ample, in case of sodium ions (A = Na+), with [Na+]I = 12 mmol
L−1, [Na+]II = 145 mmol L−1, RT/F ≈ 25.8 mV at room tempera-
ture, and zNa+ = 1 we find Δ𝜑Na+= 64.4 mV.

2.1.1. Resting Potential

At this point, we only considered the equilibrium condition for
a single ionic species (here Na+) assuming no ionic transmem-
brane net flux. In the real cells, Nernst potentials for all species
showing the concentration gradients across the membrane are
formed (Table 1), resulting in a superposition of these individ-
ual Nernst potentials, that finally differs from the single ion case
example. This also changes the magnitude of the driving force,
leading to a transmembrane penetration of ions, aiming to reach
a new equilibrium condition accounting for all relevant ions. This
process is a diffusion process in nature, and the corresponding
ion diffusion flux jA,Diff is described by Fick’s first law:

jA,Diff = −DA ⋅
d [A]
dz

(5)

Here, DA is the diffusion coefficient for ionic species A and
d[A]/dz is the transmembrane ion concentration gradient. For
simplicity, we assume a 1D ion diffusion process. At the same
time, the electric field across the membrane will induce an ion
drift flux jA,Drift:

jA,Drift = ezAnA𝜇AEM (6)

where e is the elementary charge, nA the number and μA the mo-
bility of charge carrier A, and EM the electrical field across the
membrane. zA is the valence of the charge carriers. With the Ein-
stein relation we can express the mobility by the ionic diffusion
coefficient, the Boltzmann constant k, the temperature, and the
elementary charge:

𝜇A = DA
e

kT
= DA

F
RT

(7)

We may simply replace the number of charge carriers by the
ion concentration, i.e., nA = [A]. Moreover, the transmembrane
electric field is given by the voltage drop across the membrane
Δ𝜑M and the membrane’s thickness L: EM = Δ𝜑M/L . The total
net flux jA for the ionic species A is given by a superposition of
the diffusion and drift fluxes:

jA = jA,Diff + jA,Drift = DA ⋅
(

zAF
RT

Δ𝜑M

L
[A] −

d [A]
dz

)
(8)
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Equation (8) is a differential equation of first order of the form:

d [A]
dz

= a [A] + b (9)

The boundary conditions for this differential equation are [A]
= [A]I (i.e., concentration in the cytoplasm) for z = 0, and [A] =
[A]II for z = L (i.e., extracellular ion concentration). By integration
across the membrane from z = 0 to z = L we obtain:

jA = z2
A

FΔ𝜑M

RT
⋅

DA

L
⋅

[A]II − [A]I ⋅ exp
(
− zAFΔ𝜑M

RT

)
1 − exp

(
− zAFΔ𝜑M

RT

) (10)

We define PA = DA/L to be the membrane’s permeability for a
given ion A. In a steady state, the ideal total flux across the mem-
brane is zero:

j = 0 =
∑

A

jA (11)

This condition is satisfied for only a single voltage value Δ𝜑M,
the resting membrane potential:[87]

Δ𝜑M = RT
F

⋅ ln

(∑
CationsPA[A]II +

∑
AnionsPA[A]I∑

CationsPA[A]I +
∑

AnionsPA[A]II

)
(12)

Instead of absolute permeabilities PA, it is useful to express
Equation (12) with relative permeabilities pA∝PA. For simplicity,
we now assume that only the cations Na+, K+, and the anion Cl−

are dominating:[87]

Δ𝜑M = RT
F

⋅ ln

(
pNa+

[
Na+

]II + pK+ [K+]II + pCl− [Cl−]I

pNa+
[
Na+

]I + pK+ [K+]I + pCl− [Cl−]II

)
(13)

Equation (13) is the so-called Goldman–Hodgkin–Katz equa-
tion. It has been experimentally verified that K+ and Cl− are
carrying most of the ionic current in neurons. We set pK+ = 1,
pCl− = 0.1, and pNa+ = 0.03.[87,88] With the concentrations given
in Table 1 and a body temperature of 37 °C (= 310 K) we find a
resting potential of Δ𝜑M =−75 mV versus extracellular medium.
This value is in good agreement to what can be experimentally
measured.[86] The resting potential is therefore close to the K+

equilibrium potential.

2.1.2. Saving the Concentration/Potential Gradient
(Sodium–Potassium ATPase)

Ideally, the total transmembrane ionic flux is zero. But in reality,
a small ionic leakage of sodium and potassium ions crossing the
membrane is existing, directed to neutralize the concentrations
gradients over time, which would lead to a degeneration of the
neuron. Keeping the ion concentration gradients constant (and
thus, the intrinsic electric potential), an additional active process
is involved, known as the sodium-potassium ATPase. The pro-
cess is also denoted as Na/K-pump and a schematic presentation
of the operation principles is shown in Figure 1c.

Figure 2. Generation of action potentials. a) Illustration of a voltage-
controlled Na+-ion channel at rest potential (1), during depolarization (2)
and repolarization (3), respectively. A K+-ion channel is depicted in (4). b)
Transient characteristic of an action potential (red) and a stimulation that
does not trigger an action potential (green).

2.2. Generation and Transmission of
Electro(Chemical)Physiologic Signals

The cell’s membrane is suppressing most of the ionic current,
making the absolute permeabilities quite low, leaving only a
small ionic leakage current persistent. On the local scale, parts
of the membrane can act as a gate for transmembrane ion ex-
change. These parts are termed as ion channels, which are ion-
selective proteins and can control the ion movement. There are
different types of ion channels. The most important ion chan-
nels are voltage-controlled channels and Ca2+-triggered channels.
Voltage-controlled channels open upon applying a certain mem-
brane potential above a threshold-level. In case of Ca2+-triggered
channels, presence of Ca2+-ions triggers opening of the ion chan-
nels. There are also leakage channels, that allow transmembrane
ion exchange at rest. The membrane permeability for an ion is
related to the number of open ion channels. Though the abso-
lute number of open ion channels is small at rest, the relative
number of open K+ leakage channels is much larger than of any
Na+ channels, which results in relative permittivity of pK+ = 1
compared to pNa+ = 0.03.[87,88]

2.2.1. Action Potentials

At rest, the voltage-controlled ion channels are closed,
Figure 2a-1. We now consider that the membrane potential
of a neuron is suddenly increased above a certain threshold
level, typically at about -55 mV. This opens fast voltage-controlled
Na+ channels, Figure 2a-2. Eventually, Na+ ions move into the
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Figure 3. Equivalent circuit of the Hodgkin–Huxley model. VM and CM are the membrane potential and capacity. Δ𝜑Na+ , Δ𝜑K+ and Δ𝜑Cl− , and gNa+ ,
gNa+and gCl− , are the Na+, K+ and Cl− overpotentials and ionic conductance, respectively. VL and gL are the leak potential and conductance.

cell due to the concentration gradient. This will increase the
membrane potential towards the Nernst potential of Na+ and
results in the generation of an action potential (AP, Figure 2b). A
positive feedback loop will open more and more Na+ channels.
Since Δ𝜑M logarithmically depends on pNa+ , pNa+ must change
by orders of magnitude and for a short time pNa+ > pK+ . This
process is called depolarization. After a short time (usually some
1–2 ms), the Na+ channels become inactive and get closed. This
will stop further Na+ transport into the cell. Now, slow voltage-
controlled K+ channels open and allow for transport of K+ out of
the cell. Evidentially, the membrane potential will decrease. We
call this process repolarization. Since the permeability for K+

is now larger than during rest, the membrane potential will be
subject to a short undershoot effect (hyperpolarization) until the
voltage-controlled K+ channels become inactive. The Na+ chan-
nels remain inactive for a while (refractory period, denoted as RP
in Figure 2b), during which the cell cannot trigger a new action
potential. Over time, the sodium-potassium ATPase will restore
the initial ion concentration gradients. The positive feedback
loop ensures that once the cell is stimulated above the threshold
level, the depolarization continues irrespective of any external
influence. If the potential is below the threshold voltage the Na+

permeability is not sufficiently increased, and the cell returns to
the resting potential without triggering an action potential. It is
noteworthy that the shape and amplitude of an action potential
do not depend on the stimulation signal, once the threshold
potential has been exceeded. Thus, the depolarization process
can be considered as an “all or nothing” event.

2.2.2. The Hodgkin–Huxley Model

The initiation and propagation of action potentials in neurons
can be modeled using the Hodgkin–Huxley model.[83,89] It is
based on a parallel circuit composed of the cell membrane’s ca-
pacity CM = C′

M ⋅ l (where l is the length of the membrane and
C′M ≈ 1 μF m−1),[90] and a number of non-linear conductance,
which are connected in series to voltage sources as shown in
Figure 3. Each series connection of a conductance and voltage
source represents voltage-controlled ion channels (i.e., gNa+ and
gNa+ for the Na+- and K+-ion channels) and the respective elec-
trochemical gradient (Table 1).[91] gL = 0.3 mS cm−3 and VL =

−54.4 mV[91] were originally introduced to model other ions.[83]

Nowadays, gL and VL are denoted as leakage conductance and
leakage potential. IP represents the sodium-potassium ATPase
and Δ𝜑M is the membrane potential.

Using the voltage-clamp method,[92] Hodgkin and Huxley de-
rived expressions for sodium and potassium conductance:

gK+ = ḡK+ ⋅ n4 and gNa+ = ḡNa+ ⋅ m3 ⋅ h (14)

where ḡK+ = 36 mS cm−3 and ḡNa+ = 120 mS cm−3 are the maxi-
mum conductances measured during an action potential, and n,
m, h = 0…1 are gating variables, which describe activation and
inactivation of ion channels.[91] gNa+ requires two different gating
variables m and h to describe the fast activation and delayed inac-
tivation. The membrane potential obeys the following differential
equation:

CM ⋅
dΔ𝜑M

dt
= IP − IK+ − INa+ − IL (15)

For the K+- and Na+-ion current we find

IK+ = gK+ ⋅
(
Δ𝜑M − Δ𝜑K+

)
and INa+ = gNa+ ⋅

(
Δ𝜑M − Δ𝜑Na+

)
(16)

Based on the experimental findings, we may express the gating
variables as follows:

dn
dt

= 𝛼n

(
Δ𝜑M

)
⋅ (1 − n) − 𝛽n

(
Δ𝜑M

)
⋅ n (17)

dm
dt

= 𝛼m

(
Δ𝜑M

)
⋅ (1 − m) − 𝛽m

(
Δ𝜑M

)
⋅ m (18)

dh
dt

= 𝛼h

(
Δ𝜑M

)
⋅ (1 − h) − 𝛽h

(
Δ𝜑M

)
⋅ h (19)

𝛼n, 𝛼m and 𝛼h are exponential functions. By using Equa-
tions (15) and (16–19) we find a non-linear differential equation,
which cannot be analytically solved. But by choosing appropriate
values for all constants, the numerical simulations show similar
transient currents compared to measured action potential.
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Figure 4. a,b) Basic structure and operation of chemical synapses (a) and electrical synapses (b).

2.2.3. Signal Transmission and Synapses

Neuronal information is processed by the transmission of the
action potential. After initiation of the electric signal due to dif-
ferent types of stimuli, neurons transmit signal further to other
neurons. This information processing between two or more
neurons is performed by synapses. A synapse connects a pre-
synaptic to a post-synaptic neuron (see Figure 4). Generally, two
different types of synapses can be distinguished—chemical and
electrical.

In case of chemical synapses (Figure 4a), information trans-
mission involves signal propagation from a neuron to and across
a chemical synapse, by changing the electric impulse to chem-
ical response that in turn is transformed back into an electric
signal.[93] The signal (i.e., the action potential) is directed along
the neuron’s axon (nerve fiber) toward synapses. A synapse con-
nects the axon of a pre-synaptic neuron (also known as axon ter-
minal) and a dendrite of a post-synaptic neuron. The cell body
(soma) of the presynaptic neuron and its axon are connected by
the axon hillock. The role of the axon hillock is to sum up action
potentials before propagating across the axon. This signal prop-
agation is enabled by local generation of action potentials across
the axon. The action potential is generated at x = x0. and will po-
tentially increase the local membrane potential nearby x0. If the
membrane potential at x = x1 is above the threshold potential, a
new action potential will be generated at x1. Due to the refractory
phase of Na+ channels, signal propagation takes place in only one
direction. However, this signal propagation is relatively slow and
works only for short distances. Faster signal propagation towards
a synapse is provided by myelin sheaths,[94] which act as insula-
tors and only allow for generation of an action potential between
two neighboring myelin sheaths. Signal propagation is now pro-
vided by the electric field that jumps across the myelin sheaths.

Once the signal reaches the pre-synaptic axon terminal (presy-
naptic spike), neurotransmitters (acetylcholine, ACh) are re-

leased into the synaptic cleft. In the presence of neurotransmit-
ters, receptors on the post-synaptic dendrite open Na+-ion chan-
nels. The influx of Na+ will then generate an action potential on
the post-synaptic neuron (post-synaptic spike). Initially, the neu-
rotransmitters are kept in synaptic vesicles on the pre-synaptic
side. Once the pre-synaptic side is stimulated voltage-controlled
Ca2+-ion channels are opened. The influx of Ca2+ triggers the
vesicles to release the neurotransmitters into the synaptic cleft.
After signal propagation across the synapse, these vesicles are
again regenerated.

The strength of the synapse (connection between two neurons)
can be modeled by a weighting factor Δw. Δw is large if there is a
strong link between the neurons, that is, an action potential of the
pre-synaptic neurons propagates across the synapse and stimu-
lates the post-synaptic neuron. Δw can be also small so if there is
no or only a weak junction between both neurons. The ability of
neurons to adjust the strength of the connection (synapses) be-
tween two and more neurons is defined as neuroplasticity.[95] The
biological process that is responsible for this ability is known as
spike-timing-dependent plasticity[57,96,97] (STDP) and is schemat-
ically depicted in Figure 5. STDP describes that the change Δw
of the weighting factor between two neurons (A) and (B) is a
function of the time difference between the pre- and postsynaptic
stimulation. When the pre-synaptic neuron (A) is stimulated at
first and the post-synaptic neuron (B) is stimulated shortly after-
wards, Δw is increased (long term potentiation, LTP). However,
the post-synaptic neuron (B) may be also connected to other neu-
rons (X) that allow for stimulation, which is not correlated to a
stimulation of neuron (A). In this case, Δw is decreased (long
term depression, LDP). LTP and LDP are important processes
that allow neuronal signal processing and learning. Biologically,
LTP and LDP are due to an increase/decrease of the neurotrans-
mitters, Ca2+-ion channels and ACh-receptors.

Electrical synapses have much simplified structure
(Figure 4b), practically no delay (very fast) signal transmission
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Figure 5. Illustration of spike-timing-dependent plasticity by a change of
the weighting factor as a function of the time difference Δt between pre-
(A) and post-synaptic (B) spikes. An additional neuron (X) is shown, which
can stimulate neuron (B) without any correlation to a stimulation by neu-
ron (A). Reproduced with permission.[98] Copyright 1998, Society for Neu-
roscience.

and synchronous action and are bidirectional, allowing for a di-
rect charge (ion) transport. They are less common but are present
in all animals’ nervous systems, found typically in the cardiovas-
cular system, retina, and hormone secreting neurons. They are
spread in neuromuscular junctions where rapid responses are
essential. In electrical synapses, the pre- and post-synaptic side
are connected by pores on the cell membrane, which are called
gap junctions (also known as intracellular gap). These dynamic
gap-junctions have a diameter of 1.6–2 nm and are much shorter
(2–4 nm) compared to the synaptic cleft of chemical synapses
(typically 20–40 nm).[99,100] These are intercellular connections of
the cytoplasm of two cells, that allow electrical signals to be trans-
mitted across two neurons. In contrast to chemical synapses, gap
junctions allow direct charge transport, i.e., for transport of ions,
and molecules such as metabolites or intracellular messengers
with a molecular weight of up to 1 kDa.[101] Here, the mass
transport is a diffusion-controlled process, which is typically
bidirectional in contrast to chemical synapsis, where signal
transmission is unidirectional. Electrical synapses can also be
effectively rectifying by opening/closing upon a change of the
membrane potential or electrochemical ambient (such as high
extracellular Ca2+-concentration or low pH-value).[101] Synaptic
plasticity has been intensively studied for chemical synapses,[102]

but similar behavior is also reported for electrical synapses,[103]

which are much faster but not as complex as chemical synapses.

3. Artificial Neurons and Synapses

Using advantages and functions of biological nervous system for
data processing can proceed in two fundamentally different ap-
proaches.

The first way is reproducing the function(s) only, without con-
sidering reproducing the mechanism. For example—the action
potential in a neuron can be generated directly by applying ex-
ternal voltage from a source. Synapses must not necessarily be
a junction between two artificial neurons, and their weight must

not necessarily be representing the strength of the connection
(ohmic resistance) but can use other physical effects, e.g., mag-
netic junctions etc. This can be achieved for example by software
and/or combined software/hardware approach and is currently
used in classical metal–oxide–semiconductor (CMOS) architec-
tures.

The second possibility demands reproducing the operation
mechanism as well. In this case, the used cells/devices have not
only the same output functionalities, but as well can physically
reproduce the processes (or at least a part of them) of their bi-
ological counterparts.[55,76,104] The easiest way of creating artifi-
cial neurons and synapses and expecting the same behavior and
functions is using systems/devices that operate on the same fun-
damental principles. In the previous section, it has been demon-
strated and discussed that biological neuron cells and the connec-
tions between them (synapses) operate on electrochemical prin-
ciples. Therefore, the focus should be set on electrochemical sys-
tems. These systems have the advantage that a variety of ions and
electrolytes/membranes can be used for reproducing biological
functions and not only Na+, K+, Ca2+ and Cl− (as in biological
cells). This makes it possible not only to mimic the functions, but
also to control and/or modify them, depending on the targeted
applications. One can select for example membranes/electrolytes
made of various inorganic or organic/bio/polymer materials, en-
suring stability and robustness in various environments and con-
ditions. By variation of the thickness, the diffusion/response
time can be tuned. Using different mobile ions (e.g., with differ-
ent size, charge, mobility, etc.) and ion sources (elements, com-
pounds, solutions, etc.) also the transport processes can be con-
trolled. The intrinsic cell voltage can be adjusted not only by using
different ion concentrations, but as well by using different elec-
trodes, placed on both sides of the cells. In addition, the modern
technology allows downscaling the cells, reaching the size and
device density close to the number of neurons and synapses in
the human brain. Creating artificial neurons and synapses can
be understood as a replacement of one electrochemical system
by another.

3.1. Electrochemical Artificial Neurons

Redox-based memristive devices (ReRAMs) devices are
nanoscale electrochemical systems belonging to more the
general class of resistive random access memories (RRAM),
found capable in reproducing both fundamental processes and
functionalities of neurons and synapses. These devices obey
the same fundamental equations (e.g., (1)–(13) provided for
the biological systems. The principal schematic structure of
biological and artificial neurons is compared in Figure 6. The
membrane in bio-cells (Figure 6a) is replaced by thin solid
electrolyte (switching) film in Figure 6b. In a similar manner,
the different ion concentrations in extra- and intracellular liquids
are replaced by electrodes with different chemical potentials.

One characteristic signature of the neurons is the built-in (rest-
ing) potential, which can be adjusted for artificial cells within
much larger margins (ranging from microvolts up to few volts
are possible). Several terms are used by different communities
describing the resting potential of one cell/device—electromotive
force (emf), built-in potential or nanobattery effect. In contrast to
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Figure 6. a,b) Origins of built-in potential (nanobattery effect) in biological (a) and artificial (b) synapses. In the case of biological neurons, the intrinsic
potential is in the range of −70 mV to about −90 mV for most species. The mobility of the ions is regulated by the channels in the membrane. In
artificial neurons, the emf may largely vary depending on the particular system and thermodynamic conditions. The membrane in the biological neurons
is considered identical with the switching film in the memristive devices. The switching film has no channels, but different ions have different mobility
in the matrix due to their different bonding, charge and size.

biological cells where the resting potential is determined mainly
by Na+/K+ equilibria, there are several possible origins for this
potential[105] in memristive cells and some examples are shown
in Figure 6b. In general, any chemical asymmetry in the devices
requires electrical compensation (see Equations (2) and (3)).

One of the most typical origins for the nanobattery effect is the
chemical difference of the electrodes (different metals). For ex-
ample, the top electrode is of Ag and the bottom of Pt. As Pt is as-
sumed inert only Ag can be dissolved in the solid electrolyte film.
The driving force will act in direction to dissolve Ag from the top
electrode and deposit it at the Pt electrode. The final state would
be complete covering of Pt with Ag and the time for reaching this

final state will depend on the kinetics (reaction rate, mobility of
Ag-ions etc.). In this situation, the neuron/memristive cell will
act as a battery with the anode being the Ag electrode (negative)
and Pt will be positive pole. Similar effect can be achieved by us-
ing alloys with different concentrations (activities) of the alloying
element—for example AgCu alloy with different Cu content,[106]

or Cu2−xS of different stoichiometry (Cu content),[107] etc.
Other sources for the existence of the electromotive force

(built-in/resting potential) are differences in the partial pressure
of oxygen or moisture at the two interfaces. This is again chem-
ical difference of the electrodes, but the origin of this difference
is not the same as with different metal electrodes. This situation
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Figure 7. Operation and signal generation on an electrochemical artificial neuron based on Ag/Ge0.3Se0.7/Pt memristive device. a) Optical images of
the artificial neuron upon formation and dissolution for Ag whiskers. b) The corresponding voltage–time characteristics, recorded during the chemical
processes. c) Schematic presentation of the dynamics of the concentration gradients, corresponding to the optical images and related voltage–time
characteristics. a–c) Reproduced with permission.[105] Copyright 2013, Springer Nature.

can easily occur because top and bottom electrodes have differ-
ent access to local environment. Thus, the oxygen partial pres-
sure at the top electrode will be higher, as access of the gas to the
electrode/electrolyte interface is easier, compared to the bottom
electrode (access is much more difficult).

Differences in the surface excess energy and temperature can
also result in an intrinsic potential difference. Especially impor-
tant are concentration gradients of one or more charged species
(cations and/or anions) within the switching film, leading to an
electromotive force. In more general cases this potential is a
nonequilibrium potential, as with time the concentration of the
mobile species will tend to relax, thus the gradient will disappear.
Such type of potential can be repeatedly created or resolved by the
operation scheme of the device, as it is known that the amount
of incorporated and extracted ions during the switching process
is usually not equal.

It is important to note that driving forces and gradients can
overlap and potentiate or diminish their effect on the total emf.
This is exactly comparable to the situation of overlapping poten-

tial contributions in the biological neurons. It is worth explaining
that in artificial devices this potential cannot always be measured
directly by simple electrical/voltage measurements due to, for ex-
ample, too high electronic conductivity or too insulating samples.
Nevertheless, despite this force cannot always be directly mea-
sured, its action and effects on the system are persistent, modu-
lating the electrical behavior and response.

An example, experimentally evidencing that system operating
on same fundamental principle behaves similarly in terms of
voltage/current responses is shown in Figure 6. The formation
of action potential and general voltage signal in Ag/Ge0.3Se0.7/Pt
artificial neuron[105] is a function of two parallel processes of for-
mation of potential difference that overlap. The potential-time de-
pendence (shown in Figure 7) is also correlated with the optical
changes in the system (captured by optical microscopy) and as
well schematic presentation of the chemical changes, responsi-
ble for the electrical response.

As it can be seen, the shape of the potential–time curve
(Figure 7b) is very similar (practically identical) to action
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potential—time dependence of a biological neuron (Figure 2b).
Specifically, the membrane potential in biological neurons can
be emulated by the built-in potentials in memristive device. Thus,
the functionalities of memristive devices based on artificial neu-
rons can mimic the generation and transmission of electrophys-
iologic signals in biological neuronal systems, enabling the de-
velopment of neuro-inspired computing systems for future AI
applications.

The mechanism and the origin of such neuronal dynamic
behavior in redox-based artificial neurons can be described as
interplay between the Nernst and diffusion potentials.[105] For
example, the artificial neuron, as prepared, has the structure
Ag/Ge0.3Se0.7/Pt. Ge0.3Se0.7 dissolves chemically Ag (from the
top electrode), leading to the incorporation of Ag+ ions within
Ge0.3Se0.7. This incorporation is also optically visible as a vio-
let shade around the Ag metal electrode (Figure 7a). Thus, the
initial state of the solid film is an Ag-doped Ge0.3Se0.7 where
the concentration of Ag+ is homogenously distributed within
the selenide, as shown in Figure 7c. Applying a negative volt-
age to the Ag top electrode is casing a formation of Ag whiskers.
To form the whiskers, Ag+ ions are extracted/reduced from the
film, leading to significant depletion of Ag+ in Ge0.3Se0.7 (see
stage t0). After the current approaches zero (meaning most of the
ions are extracted), we switched the voltage off and start mea-
suring the electromotive force as shown in Figure 7b. At this
point, Nernst voltage (chemically asymmetric electrodes) domi-
nates shifting the emf to negative direction (Ag is anode). With
time and due to this force Ag whiskers start to dissolve again
(stage t1 in Figure 7a), creating a concentration gradient as shown
in Figure 7c. The sign of the voltage formed due to the concen-
tration gradient is opposite to the initial one, leading to shift
in the recorded potential towards positive values. The concen-
tration of Ag+ ions start to equilibrate going into stage t3. The
time scale is longer compared to the time scale shown for bio-
logical neurons shown in Figure 2b. The reason is the different
absolute mobilities of the ions. The lower is the ion mobility the
slower is the equilibration and respectively the signal relaxation.
The opposite is also true—as higher the mobility as faster the
equilibration/relaxation.

Of course, biological neurons show differences in absolute
concentration of ions and reaction time. However, their proper-
ties cannot be varied or modulated in a large time/voltage win-
dow. In contrast, the behavior and characteristics of artificial neu-
rons are capable of being modulated. As discussed on the ex-
ample of Figure 7, one can vary several parameters, leading to
change in the electrical characteristics and giving a huge advance
and perspective for designing neurons according to intended ap-
plications. For example, the Nernst voltage can be varied by com-
bining different top and/or bottom electrodes. The electromotive
force formation is exactly the same as in the conventional batter-
ies (of course accounting for the specifics of the nanosystems)
and therefore, using the table for standard electrode potentials
one can create neurons with differently strong initial Nernst po-
tential.

Further degree of freedom is provided by the selection of the
switching film. Its conductivity can vary not only as a function
of ion-specific bonding, but also depending on electronic con-
ductivity and several other factors such as structure, density, and
thickness. For example, increasing the thickness of the solid elec-

trolyte will slow down the equilibration of the concentration gra-
dient and in this way the relaxation time.

Thus, artificial neurons allow for much higher flexibility in re-
spect materials design and allow tuning of the properties in a very
broad ranges of voltages and time windows. For electrodes, a va-
riety of metals or compounds (for example TiN, ITO, FTO, etc.)
can be used showing a spectrum of properties that can be varied
such as stability, affinity to oxygen and standard electrode poten-
tials. In a similar manner, for solid electrolytes inorganic, poly-
mer, and bioinspired materials can be used having a broad range
of mechanical, chemical, and transport properties. The combina-
tion of these factors provides the opportunity of designing artifi-
cial neurons on demand by proper selection and combination of
the individual components of the memristive device.

The implementation of biological neuron models using solid-
state electronic devices has been demonstrated not only by redox-
based memristors,[105,108–112] but also using a variety of memris-
tive systems, including phase change memories,[113–116] magnetic
random access memories,[117–119] Mott memristors,[120–124] and
diffusive memristors.

It should be noted that not all memristive cells show the
same ionic dynamics and electrochemical processes as redox-
based devices (and biological cells). In phase change devices,
the processes are restricted to (re)crystallization, i.e., purely
structural change. Spintronic neurons are based on purely elec-
tronic/magnetic effects, and Mott-type neurons are related to a
change in the structural parameters and/or thermal runaway ef-
fects (despite involving to a certain extent ionic movements).
These different types memristive devices should be considered
rather to the first type devices (providing only same functional-
ities, but not same operation principle) or as a hybrid solution.
It cannot be generalized whether their performance is better or
worse compared to the redox-based devices. By such a compari-
son it is important to consider the offered (multi)functionalities,
particular application that is targeted and as well the energy con-
sumption and required physical space.

It should be noted that artificial neurons based on diffusive
memristors have similar physical and electrochemical dynamics
with redox-based artificial neurons. In diffusive memristors,
integrate-and-fire dynamic is emulated by the field acceler-
ated drift and diffusion of metal atoms, generating conductive
nanofilament bridging the nanoclusters. The nanoclusters (Ag)
are doped in the dielectric switching layer (i.e., HfOx, SiOx)
prior to device programming.[58] Upon the removal of the
electrical bias, the metallic nanofilament gradually dissolves in
the solid electrolyte. The filament dissolution is induced by the
backward diffusion of metal atoms because of interfacial energy
minimization. As a result, the memristor relaxes back to virgin
high-resistive state. In contrast to redox-based memristors where
cation migration and nucleation processes take place during
action potential integration and firing, diffusive memristors
can mimic biological neuronal dynamics more efficiently as
the diffusive dynamics is closer to the ionic drift and diffu-
sion in biological neuronal systems.[125,126] Diffusive dynamics
involving cation and field-induced nucleation was also found
in Cu0.1Te0.9/HfO2/Pt type memristors.[127] Wang et al. have
shown stochastic leaky integrate-and-fire artificial neuron using
Pt/SiOxNy:Ag/Pt diffusive memristors integrated with a series
capacitor.[128] Moreover, by integrating the diffusive artificial
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Figure 8. Artificial synapse and different mechanisms for changing the resistance (synaptic weight). a) Schematic illustration of biological synapse
(left) and its implementation using a two-terminal memristive device (right). Adapted with permission.[138] Copyright 2018, Springer Nature. b) Timing
scheme of presynaptic and postsynaptic spike applied to the two-terminal memristive device, the voltage differences lead to the device conductance
modulation. Adapted with permission.[139] Copyright 2018, Springer Nature. c) Emulation of spike-timing-dependent plasticity using a redox-based
memristive device. Adapted with permission.[67] Copyright 2015, American Chemical Society. d) Filamentary type, where the conductive nanofilament
short circuits the cell. e) Volume type switching—here the conductivity of the whole volume is changed. f) Surface area type—the resistance change is
area dependent, but only the interface resistance is modified.

neuron with memristive device, a fully memristive artificial
neural networks was demonstrated for pattern classification.[129]

In biological neural networks, the neurons are connected by
numerous synapses and dendrites. The input signals in presy-
naptic neuron are integrated as a function of time. An action po-
tential (spike) is generated (fired) and subsequently transmitted
to presynaptic neuron when the membrane potential reaches a
threshold potential. After the firing process, the membrane po-
tential is reset to resting potential (see Figure 2b). Various neuron
models, such as leaky integrate-and-fire (LIF),[130,131] exponential
integrate-and-fire (EIF),[132] adaptive exponential integrate-and-
fire (AdEx)[133–135] and generalized exponential integrate-and-fire
(GEM)[136,137] models have been developed to describe neuronal
activities. In a standard leaky integrate-and-fire neuron model,
the differential equation for membrane potential is given by:

𝜏m
dΔ𝜑

dt
= −

(
Δ𝜑t − Δ𝜑rest

)
+

It

GL
(20)

where 𝜏m is the membrane time constant, Δ𝜑t is the membrane
potential, Δ𝜑rest is the rest potential, It is the external input cur-
rent, GL is the membrane leakage conductance. In exponential
integrate-and-fire neuron model, there exists an exponential de-
pendence of Δ𝜑t on the right side of Equation 20, implying the
active potential generation is exponential, given by the differen-
tial equation:

𝜏m
dΔ𝜑

dt
= −

(
Δ𝜑t − Δ𝜑rest

)
+ ΔT exp

(
Δ𝜑t − Δ𝜑th

ΔT

)
+

It

GL
(21)

where ΔT is the nonlinearity of active potential initiation, Δ𝜑th is
the effective threshold potential of the neuron. 2D neuron models
such as adaptive exponential integrate-and-fire[133–135] and gener-
alized exponential integrate-and-fire models[136,137] where the ex-
ponential nonlinearity is combined with a second current adap-
tion variable have also been introduced to simulate neuron activ-
ities, especially to simulate various type of action potential sig-
nals. The models introduced above can be fitted to the Hodgkin–
Huxley model, as introduced in Section 2, and provide effective
and accurate descriptions about the timing of action potential fir-
ing in neuronal networks.

3.2. Electrochemical Artificial Synapses

Memristive devices can also act as synapses (Figure 8a) by
changing the resistance between the electrodes.[138] In their ba-
sic operation principles, ReRAM synapses are closer rather to the
electrical biological synapses (Figure 4b), than to chemical ones.
The resistance change is reached either by forming/dissolving
filaments, by incorporating/extracting donors/acceptors, or
by forming/dissolving interfacial layers (Figure 8d–f). Same
functions such as short- and long-term potentiation/depression,
plasticity etc., as for biological synapses are also characteristic
for electrochemical memristive devices. By gradually or abruptly
change the conductivity (respectively resistance) of the device
one changes the synaptic weights and can switch between
non-volatile learning (memory) or adapt to learning/forgetting
processes with different level and/or speed of forgetting and
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learning. This enables the possibility of using memristive
devices as artificial synapses for implementing spike-timing-
dependent plasticity learning rule. The timing scheme of the
applied voltage spikes (Figure 8b) can determine the conduc-
tance modulation of a memristive device.[139] This phenomenon
is like the spike-timing-dependent plasticity, which describes
the biological synaptic weight modulation is a function of the
time difference presynaptic and postsynaptic spikes (Figure 5).
Figure 8c shows the experimental measured conductance tuning
in a memristive device. Long-term potentiation and long-term
depression induced by the timing difference of voltage pulses.

The reported different switching mechanisms can in some
sense be considered as representing different synapses, as the
properties and stability of the device’ resistances vary, depending
not only on the material systems but also on the switching type.
Also, in this case the properties of the synapses can be modified
and even designed based on the selected materials systems, i.e.,
electrode materials and the type/composition of the solid elec-
trolyte. For example, it has been found that Ag filaments in SiO2
are formed faster but are less stable compared to Cu filaments
in same matrix. Moreover, it is demonstrated that the dynamics
of the metallic filament could be tuned by electrochemical alloy-
ing approach. Yeon et al.[106] reported that in amorphous silicon,
Ag-Cu alloying conducting channels show enhanced reliability in
contrast to Ag–Ti, Ag–Cr or Ag–Ni alloyed devices. Superior elec-
trical stability and analog switching behaviors with low device-to-
device variation were obtained in the Ag–Cu alloyed memristors.

It is also demonstrated that introducing doping into the ma-
trix can accelerate or slow down diffusion, respectively tune the
switching time and filament stability.[140] If the inserted dop-
ing is forming stronger bonds to the matrix the transport is re-
tarded, but the stability of the formed filament is increased. In
case of week bonding, the migration/switching is faster, but the
filament is less stable. Factors, that can influence the cell resis-
tance and state stability are also considered moisture/protons, ex-
cess ions from the active metal electrode, light illumination, and
temperature.[141–144]

Memristive devices offer the unique possibility to be able to
serve as both neurons and synapses. These properties are of-
ten used for different applications, including connecting biolog-
ical and artificial neurons. The choice of the materials system
and mobile species are a powerful tool for designing neural and
synaptic properties on demand.

4. Synaptic Arrays and Applications

The previously mentioned artificial synapses and neurons serve
as fundamental components (basic units) for neuromorphic sys-
tems. To create hardware neural networks using memristors,
it is necessary to incorporate memristive arrays, particularly in
a crossbar configuration, as this allows for optimal integration
density and parallel computing capabilities. These arrays have
gained significant attention in recent years due to their poten-
tial to improve the efficiency and performance of various appli-
cations. Memristor arrays offer a promising alternative to tradi-
tional computing architectures, particularly in applications such
as artificial neural network acceleration and biological signal pro-
cessing. In this section, we provide an overview of the current
state of the neuron and synaptic arrays and applications, includ-

ing a discussion of two-terminal and three–terminal arrays, their
advantages and limitations, and recent research advancements.
We also highlight the potential applications of these arrays in var-
ious fields and discuss the challenges and opportunities in the de-
velopment and implementation of memristive-based neural sys-
tems.

4.1. Artificial Neurons and Synapses on a Single Device Level

4.1.1. Artificial Neuron Device

The leaky-integrate-fire (LIF) neuron model was developed based
on the requirement that neurons surpass a specific threshold po-
tential to trigger action potentials. This model solely describes
the process of generating action potentials and excludes ion
dynamics.[145] It is widely used in the field of neuromorphic com-
puting due to its simplicity. Consequently, constructing LIF neu-
rons with innovative principle devices is appealing as they offer
high scalability and efficiency.

To implement LIF neurons on hardware, three crucial ele-
ments are leakage, accumulation, and emission. Leakage can
be modeled by the relaxation process of devices, such as the
heat dissipation of Mott devices[121,146,147] and ion diffusion in
diffused memristors.[129] Leakage dynamics is fundamental for
spatiotemporal integration and nonlinear computation of neu-
ronal signals. Nonlinear physical processes of memristors en-
able the realization of cumulative properties, like heat accumu-
lation in Mott devices[147,148] and the formation of conductive fil-
aments in metal ion-based memristors.[129] Action potentials are
triggered by strongly nonlinear transition processes in memris-
tors, resulting in a sudden increase in device conductance, such
as in Mott devices,[121,146,147] diffusion memristors,[129] and phase
change memristor.[113]

The function of LIF neuron has been realized using diffu-
sive memristors,[112,120,129] Mott devices[120] and phase change
memristor.[113] Duan et al.[149] proposed compact implementa-
tion of LIF neuron using a NbOx-based Mott device as shown
in Figure 9a. such single neuron can perform nonlinear calcula-
tions, like signal gain modulation.

Neural oscillations refer to the repetitive or rhythmic neuronal
activities in the biological nervous system that play a crucial role
in brain functions such as feature binding and frequency-based
information transmission mechanisms.[150,151] Thus, emulating
oscillatory neurons on hardware is essential in developing neu-
romorphic intelligent hardware systems.

Currently, as depicted in Figure 9b, an effective approach
to achieving oscillatory neurons involves connecting a Mott
memristor[146] or an Ag-based ECM memristor in series with a
load resistor.[152,153] By applying a long voltage bias as input, os-
cillating neurons can be realized and the firing frequency can be
adjusted by varying the amplitude of the input pulse or the resis-
tance value of the series resistance.[153] Furthermore, oscillatory
neurons can be used to build a coupled oscillatory neural net-
work, thereby expanding the range of potential applications for
such neurons.

The H–H neuron model[83] is considered the most intricate
and precise neuron model for describing the electrochemical pro-
cesses of biological neurons. This model can accurately exhibit
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Figure 9. Implementation of artificial neurons using memristive devices: a) LIF neuron; b) oscillatory neuron; c) H–H neuron. a) Adapted with
permission.[149] Copyright 2020, Springer Nature. b) Adapted with permission.[146] Copyright 2017, AIP Publishing. c) Adapted with permission.[147]

Copyright 2013, Springer Nature.

various firing behaviors of biological neurons. It is a continuous
model that comprises differential equations describing the con-
ductance of each ion channel on the cell membrane. It is com-
monly used for studying the firing behavior and characteristics
of individual neurons.

Pickett et al.[147] and Lin et al.[148] developed H–H neuron cir-
cuits using NbO2 memristors as shown in Figure 9c. Two of the
NbO2 memristors have a shunt capacitor powered by a DC source
of the opposite polarity to simulate the opening and closing of
Na+- and K+-ion channels in the model. This circuit can repli-
cate complex neuronal dynamics, such as all-or-nothing pulses,
bifurcation thresholds, signal gain, and the refractory period of
continuous pulse firing states. Furthermore, in 2018, Yi et al.[121]

integrated the same circuit with VO2 memristors to create H–H
neurons that can produce 23 different types of neuron firing be-
haviors by adjusting the input signal, parallel capacitance, and
series resistance. This system can achieve rich neuron behaviors

based on the H–H neuron model and improve the prospects of
bionic applications with raised hardware costs and operational
complexity.

4.1.2. Artificial Synapse Device

In biological systems, neurons are interconnected through
synapses, which can transmit signals in the form of electrical or
chemical impulses from one neuron to another. The strength
of these connections, described by synaptic weights, is not
fixed and can undergo plasticity in response to various stimuli.
Synaptic plasticity underlies both short-term and long-term
learning in humans, making the development of artificial
electronic synapses a crucial step in creating artificial systems.
Recent advances in electronic synapse devices have shown great
potential for realizing this goal. These devices include resistive
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Figure 10. Various plasticity implemented by memristive devices: a) long-term plasticity (LTP); b) short-term plasticity; c) metaplasticity; d) heterosy-
naptic plasticity. a) Adapted with permission.[155] Copyright 2016, Royal Society of Chemistry. b) Adapted with permission.[58] Copyright 2017, Springer
Nature. c) Adapted with permission.[156] Copyright 2018, Royal Society of Chemistry. d) Adapted with permission.[66] Copyright 2017, Wiley-VCH.

random-access memory, ferroelectric tunnel junctions, phase-
change memory, magnetic memory, ferroelectric field-effect
transistors, ion-gated transistors, floating-gate transistors, and
charge-capture transistors.

In the 1980s, scientists first discovered long-term synaptic
plasticity, which refers to the ability of the connection strength
(weight) between neurons to change durably in response to
stimulation of the presynaptic neuron and the postsynaptic
neuron. In order to simulate the long-term plasticity of bio-
logical synapses, artificial synapses should be capable of non-
volatile enhancement (inhibition) under external electrical stim-
ulation. Long-term potentiation and long-term depression have
been demonstrated in electrochemical metallization memory
(ECM).[106] based on metal conductive filament and valence
change memory (VCM) based on oxygen vacancy conductive
filament.[154]

TaOx
[155] and HfOx

[154] resistive switching memories have also
been reported to exhibit LTP/LTD characteristics. However, the

LTP/LTD behavior of these devices generally exhibits nonlinear-
ity, which can be improved by optimizing the device structure.
Wang et al.[155] proposed inserting a SiO2 layer as a diffusion
limiting layer (DLL) between TiN and TaOx to limit the number
of oxygen vacancies involved in forming the conductive filament
during the abrupt change process of LTP/LTD. This improves the
linearity of the device as shown in Figure 10a. Jo et al.[63] devel-
oped Ag:Si/Si ECM memory and demonstrated LTP/LTD charac-
teristics using this device. However, the retention and uniformity
of ECM devices can still be improved. Yeon et al.[106] proposed us-
ing Ag–Cu alloy as the active electrode for ECM devices in which
the conductive filament is more stable.

Short-term plasticity refers to the phenomenon of synaptic
weight changes within a short time scale of milliseconds to min-
utes, including short-term potentiation (STP) and short-term de-
pression (STD).[157] Artificial synaptic devices with short-term
characteristics can be constructed using short-term physical pro-
cesses in devices. For example, Wang et al.[58] achieved STP, STD,
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and other short-term plasticity in ECM resistive switching devices
based on Ag conductive filaments, as shown in Figure 10b. Un-
der weak pulse stimulation, weaker Ag conductive filaments were
formed in the device, and the poor stability of the larger surface
energy of Ag caused the filaments to gradually dissolve after the
stimulation was removed, resulting in short-term effects in the
device.

Metaplasticity is an important concept in synaptic plasticity re-
search, as it refers to how the history of a synapse’s activity can af-
fect its current plasticity. This can be understood as the plasticity
of synaptic plasticity.[158] Wu et al.[156] studied different types of re-
sistive switching devices and found that by applying a small pulse
to the device, which does not significantly change the device’s
conductivity but affects the state of the conductive filaments, the
LTP/LTD produced by the second pulse is stronger/weaker than
that produced without the small pulse, as shown in Figure 10c.

Heterosynaptic plasticity is a phenomenon where specific
synaptic pathways can undergo weight changes without direct
stimulation.[159] There are various forms and mechanisms of het-
erosynaptic plasticity, with one widely studied phenomenon be-
ing the modulation of synaptic plasticity by the release of modu-
latory neurotransmitters from a third neuron. Device-based het-
erosynaptic plasticity utilizes the effect of the third terminal’s
field-effect and electric field on ion migration. Yang et al.[66] fab-
ricated a vertically structured Ta/TaOx three-terminal memristor,
as shown in Figure 10d. Applying a voltage between the top and
bottom electrodes causes oxygen vacancy conductive filaments to
form in the device, and applying a voltage to the sidewall mod-
ulation electrode can adjust the electric field distribution in the
resistive layer, thereby affecting the formation of conductive fila-
ments. When different voltages are applied to the third terminal,
the Set/Reset voltage and LTP/LTD characteristics of the device
can be modulated.

4.2. Two-Terminal Memristor Array

Two-terminal memristors are passive electronic devices that ex-
hibit resistance transition based on the history of the current
passing through them. These memristors can be integrated into a
crossbar array structure, which allows high degree of parallelism
and computational efficiency for the implementation of various
memory and computing functions.

Passive memristor array and CMOS–memristor hybrid array
are two types of memristive integration methods that are com-
monly used. A passive memristor array, also known as a memris-
tive crossbar array, consists of an array of memristors arranged in
a crossbar configuration. The passive memristor array is capable
of performing various analog and digital computing operations
with high integrate density. In contrast, CMOS–memristor hy-
brid array consists of a transistor and memristor. This structure
provides an opportunity for fabricating a larger array and sup-
porting more complex applications.[45,160–164]

4.2.1. Passive Memristor Array

One of the key advantages of the passive memristor array is its
simplicity, as it only requires a single layer of memristors ar-
ranged in a crossbar configuration (Figure 11a). However, it has

Figure 11. a) Scanning electron microscopy (SEM) images of patterned
4K memristor analog passive crossbar array. Adapted with permission.[165]

Copyright 2021, Springer Nature. b) TEM image of a 3 × 3 memristor
crossbar array with 2 × 2 nm2 device area and with sub-12 nm pitch.
Adapted with permission.[166] Copyright 2019, Springer Nature.

limited read and write capability due to the sneak path problem
as shown in Figure 11b, which can cause crosstalk involving a se-
ries of memristors. This issue gets worse as the array size grows,
thus limiting the size of passive memristor arrays.

A 4K memristor analog passive crossbar array was reported[165]

using Ti/Al/TiN/Al2O3/TiO2−x/Ti/Al/TiN devices, with 99%
functional nonvolatile metal-oxide memristors as shown in
Figure 11a. To achieve better uniformity for the devices in the
main array, an additional line is added at both sides of the circuit
for the top and bottom layers forming dummy cells. In order to
increase the integration density, another effective technical route
is to reduce the feature size of the device, Pi et al.[166] demon-
strate memristor crossbar arrays with a 2 nm feature size and a
single layer density up to 4.5 terabits per square inch as shown in
Figure 11b. Such extremely small functional memristors provide
a power efficient solution for information storage and process-
ing.

As technology continues to advance, there is a growing need
for more powerful and efficient computing systems. with the in-
creasing demand for more processing units, which leads to re-
search shift towards 3D crossbar arrays. The transition from 2D
to 3D crossbar arrays involves a significant increase in complex-
ity as additional layers must be added to enable the processing
of more inputs and outputs. This structure allows for an expo-
nential increase in the number of connections that can be made,
resulting in a significant increase in processing capability How-
ever, this increased complexity also presents challenges, such as
the need for more precise manufacturing.

There are 3D horizontally integrated array and 3D vertical in-
tegrated array basically. In 3D horizontal integrated array archi-
tecture, the density of memristors is increased by vertically stack-
ing 2D arrays. Adam et al.[167] reported monolithically integrated
3D metal-oxide memristor crossbar with two passive 10 × 10
Pt/Al2O3/TiO2−x/TiN/Pt memristor crossbars with shared mid-
dle electrodes as shown in Figure 12a. The equivalent circuit
shown here depicts two memristors arranged in a stacked config-
uration with that the middle electrode is shared by both the bot-
tom and top devices. To reduce the likelihood of shorts and large
variations caused by the high step height, a planarization step
was performed prior to depositing the top layer of active metal.
Consequently, the electrical behavior of both the bottom and top
crossbar layers is similar, and the device-to-device uniformity is
satisfactory.
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Figure 12. a) Scanning electron microscopy top-view image of the fabricated memristor array and equivalent circuit for two memristors in the stacked
configuration. Adapted with permission.[167] Copyright 2017, IEEE. b) Horizontally integrated 3D crossbar array with isolation between different lay-
ers and the schematic representation for 3D stacking with shared electrodes between adjacent layers. Adapted with permission.[168] Copyright 2017,
Springer Nature. c) Schematic of 3D crossbar memristors array consisting of first, second and third-layer memory units (Pt/HfAlOx/TaN). Adapted with
permission.[169] Copyright 2021, Wiley-VCH

With more layer integrated on horizontal, the sneak path issue
becomes prominent challenges that leads to operational failure
and high power consumption.[73] To address this issue, 3D all-
silicon-based memristor array with built-in rectifying selector is
built using a p-Si/SiO2/n-Si structure as shown in Figure 12b.[168]

The interlayer sneak path is illustrated by the blue curve, while
the intralayer sneak path is represented by the orange curve. A
sneak path that extends beyond one layer and is positioned on top
of a selected layer, as depicted by the purple line, will necessarily
traverse at least 3 reverse biased devices, thereby limiting the cur-
rent in the sneak path. This work experimentally confirmed the
successful suppression of both intra- and interlayer sneak path
currents through the built-in diodes.

Also, the flexible 3D memristive array is developed via low-
temperature atomic layer deposition on the flexible substrate as
shown in Figure 12c.[169] The typical bipolar switching character-
istics are verified in memrsitor units of 3D network, including
three layers.

Unlike 3D horizontally integrated array, 3D vertically inte-
grated array utilizes pillar electrode to serve as WL and the switch-
ing layer was deposited on the sidewall. as shown in Figure 13a.
A technology path that is cost-effective for 3D integration and re-
quires only one critical lithography step or mask to reduce the
cost per bit is demonstrated.[170] The process of atomic layer de-
position is used to deposit a thin film of HfOx on the sidewall
of a pre-defined trench, creating a vertical memory structure. By
engineering the interface between the electrode and the oxide
layer using a TiON interfacial layer, a non-linear I–V response is
achieved, making it suitable for a selector-less array. Figure 13b−f
show the detailed structure of this implementation.

In order to integrate more devices to further increase the inte-
gration density, a 3D vertically integrated array with 8 layers was
fabricated as shown in Figure 13g,h. Pillar electrode is extracted
by sputtering the TiN/W to fill the hole and each horizontal BL
was opened by selective etching successively.[39] The sidewall of
each cell in the device shows interface type behavior that differs
from the conductive filaments. This results in a uniform distribu-
tion of the device and allows for continuous modulation of resis-
tance. The resistance can be modulated by changing the barrier
between the electrode and the dielectric material or by inducing
charge capture/release through defects in the material body.

The current sidewall-integrated vertical memristive architec-
ture offers an economical way to achieve multilevel function-
ality, but it has only been demonstrated in small size arrays.
Moreover, the scalability of this approach to larger layers may be
limited by the high aspect ratios required during deposition of
pillar electrode,[171] or the low current drivability of the vertical
selector.[172]

In the 3D integrated array, thermal effects present a signifi-
cant challenge during both the fabrication and operation of mul-
tilayer systems.[173,174] In order to preserve the material proper-
ties of previously fabricated layers, a low temperature budget is
necessary during fabrication. High temperatures during deposi-
tion or photoresist baking may lead to interlayer diffusion, which
reduces control over dopant concentration and nonstoichiome-
try. Additionally, the switching mechanism for most metal-oxide
memristors involves significant Joule heating, which can cause
High temperatures.[175] Such high temperatures can disrupt the
state of neighboring devices separated only by a thin middle elec-
trode. A recent theoretical study[176] has suggested that thermal
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Figure 13. a) Schematic of the 3D vertically integrated array using the vertical memristor cell, the vertical memristors are formed at the intersections
of each pillar electrode and plane electrode. Adapted with permission.[170] Copyright 2013, American Chemical Society. b–f) Cross-sectional TEM of
single-layer sample and double-layer sample. b–f) Adapted with permission.[170] Copyright 2013, American Chemical Society. g) 3D vertically integrated
array with 8 layers. h) Corresponding TEM image of the eight-layer stacks (g) with EDS mapping. g,h) Reproduced with permission.[39]Copyright 2022,
Springer Nature.

crosstalk in 3D integrated array can cause device performance
degradation and failures, particularly during the power-intensive
reset step.

4.2.2. CMOS–Memristor Hybrid Array

Different with passive memristor array, CMOS–memristor hy-
brid array can overcome the sneak path problem by using tran-
sistor to isolate the memristor, enabling precise read and write
operations.

Memristive devices offer several benefits, such as their com-
pact size, typically on the order of 4F2, where F represents the
lithographic feature size or half-pitch. Additionally, they have
simple structures that are easily fabricated and integrated with
conventional CMOS processes. However, it is worth noting that
memristive devices are not active components, unlike CMOS
transistors, as they are unable to supply energy to a circuit. To
address this issue, a possible solution is to combine crossbar ar-
rays of memristive devices with a conventional CMOS layer that
provides signal restoration and gain, albeit at a much lower den-

sity. This approach, known as CMOL (CMOS molecular-scale de-
vices), was initially proposed within the context of nonphotolitho-
graphic techniques.

Strukov et al proposed a topological structure based on CMOL
architecture that offers an uncomplicated yet effective design for
building and utilizing crossbar arrays.[177] As shown in Figure
14a, this design enables the integration of memristive crosspoint
devices at a higher density than the lateral feature sizes typically
allow, thus exceeding scaling limits. Figure 14b shows the 3D hy-
brid CMOS/crossbar circuit. The wire and via patterns are uni-
form across all crossbar layers, ensuring consistent area density
of vias throughout the stacked layers.[177] This means that adding
new layers does not necessitate modifications to the underlying
layers, making this crossbar layer stacking scheme highly cost-
effective.

Besides the significant advantages in terms of integration, the
mainstream solution is to adopt the 1T1R pseudo cross-array
structure, which can suppress the sneak path through transistors
when accessing a single device. And turn on selected transistors
at the same time when parallel computing is required, so as to
obtain the same parallelism advantage as the passive cross-array
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Figure 14. a) Top view of the crossbar (top) layer. b) Cut-away illustration of the circuit showing four crossbar layers. Adapted with permission.[177]

Copyright 2009, National Academy of Sciences, USA. c) Schematic showing the implementation of vector-matrix multiplication using memristor crossbar
devices. Adapted with permission.[163] Copyright 2018, Wiley-VCH. d) Memristor device fabrication and processing integration for the 1T1M memristor
array. Adapted with permission.[178]Copyright 2018, Springer Nature. e) Schematic of one kernel of CNN presented by staircase memristor array. f)
Cross-sectional view of the staircase memristor array. e,f) Adapted with permission.[179] Copyright 2020, Springer Nature.

structure. As shown in Figure 14c, the desired vector is con-
verted into applied voltages (shown in purple) along the rows,
and the resulting current collected from each column produces
the VMM (vector-matrix multiplication) of the memristor con-
ductance matrix Gij and voltage vector Vj.

[163] The current from
each column is collected by the transimpedance amplifier (TIA)
and then converted into a voltage signal, which is stored by a
sample and hold (S/H) circuit and sensed by an analog-to-digital
converter (ADC). Each column can be configured to either
measure current through the TIA, S/H, and ADC path, or apply
voltages along the digital-to-analog converter (DAC) path. The
fabrication and processing integration of memristor devices are
crucial in creating a 1-transistor-1-memristor (1T1M) memristor
array (Figure 14d).[178] Front-end-of-the-line (FEOL) CMOS
transistors and 2 μm technology-based wiring form the base
structure, enabling precise access to individual memristor cells
during programming. A foundry-compatible back-end-of-the-
line (BEOL) process integrates the Ta/HfOx/Pd memristor layer
on top of the CMOS. In a 1T1M array, the bottom electrode (BE)
lines are shared between rows, while the top electrode (TE) lines
and transistor gate lines are shared between columns. Isolation
between the rows and columns is provided by the interlayer
dielectric (ILD).

The highly complex connections in a convolutional neural
network (CNN) would inevitably require complex 3D structured
back-end-of-line interconnects between 2D arrays. A 3D circuit
composed of eight layers of monolithically integrated memris-
tive devices.[179] As shown in Figure 14e,f, the vertically aligned
input and output electrodes in the 3D structure make it possible
to directly map and implement complex neural networks which
provide highly compact and efficient implementations of CNNs.

Overall, both passive memristor array and CMOS–memristor
hybrid array are important components in memristive circuits,
each with its own advantages and disadvantages. The choice of
which array to use depends on the specific application require-
ments and design considerations.

4.3. Three Terminal Memristor Array

Electrochemical memristor, or electrochemical random-access
memory (ECRAM), has been extensively researched as an ana-
log synaptic device for implementing ideal synaptic features
such as symmetric potentiation and depression based on its
switching mechanism or material properties.[180–182] Studies have
shown that ECRAM exhibits excellent synaptic characteristics
and high performance, including programming times compa-
rable to memory-class devices at 10 nanoseconds and low pro-
gramming energy levels down to approximately 10−4 Joules per
second.[183] This owing to their nondestructive-weight-update be-
havior, which is attributed to the completely separated terminals
for reading and writing.[17,184–188]

However, when it comes to complex circuit configurations,
three-terminal synapses have some drawbacks compared to the
two-terminal crossbar array structure. Specifically, they have a
lower array density and are limited in their line-design structure,
which ultimately leads to lower processing speeds and higher en-
ergy consumption for the entire system.

A vertical synapse featuring a remote weight update via ion
gel was proposed to extend three terminal memristor to a cross-
bar array structure.[189] In the proposed ion-gel-gated artificial
synapse, p-type P3HT was used as the vertical channel, whereas
an ion-gel consisting of ionic liquid and poly(vinylidene fluoride-
co-hexafluoropropylene) (PVdFHFP) was used as the gate dielec-
tric layer. As shown in Figure 15a,b, A poly(3-hexylthiophene)
(P3HT) channel with a thickness of less than 100 nm is situated
at each crosspoint of the pre- and postsynaptic terminals, with the
ion-gel weight-control layer being applied onto them. The mobile
ions present in the ion gel can easily permeate the unoccupied
space within the P3HT channel, leading to an enduring alteration
in the channel’s conductance. This feature holds crucial signifi-
cance for synaptic properties.[189]

Three-terminal memristive devices can be integrated through
stacked and sidewall structures. A new type of ECRAM, called
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Figure 15. a) Cross-sectional schematic of fabrication procedure of ion-gel-gated vertical P3HT synapse. b) Schematic diagram of ion-gel-gated vertical
crossbar synapse array mimicking biological NN. The inset shows the chemical structures of P3HT, PVdF-HFP, and ionic liquid. a,b) Adapted with
permission.[189] Copyright 2020, Springer Nature. c) A 32 × 32 size VS-ECRAM array fabricated on a 2 inch SiO2/Si wafer. Adapted with permission.[190]

Copyright 2022, IEEE. d) Schematic illustration of the stacked 2 × 2 arrays comprising vertical STs and cross-sectional TEM image of experimentally
stacked pair of synaptic memristors. Adapted with permission.[191] Copyright 2021, The Japan Society of Applied Physics.

the vertical sensing ECRAM (VS-ECRAM),[190] which utilizes a
novel structure to address the limitations of the conventional lat-
eral ECRAM (LT-ECRAM) was proposed. As shown in Figure 15c,
by using a monolayer graphene electrode to precisely control
the injection of Li-ions, ideal weight-update linearity in the VS-
ECRAM can be achieved. Additionally, the graphene electrode
serves as a barrier to prevent ion mixing between the channel
and the electrolyte, ensuring superior reliability properties. These
exceptional synaptic characteristics were maintained even at a
small scale of 30 × 30 nm2, resulting in improved write and read
energy efficiency. The vertical channel structure also eliminates
the lateral diffusion term, enhancing the read latency. Sidewall
structures have also been proposed as shown in Figure 15d.[191]

The vertically structured exhibits excellent synaptic characteris-
tics while maintaining a small device area of 4F2. Sidewall struc-
tures with a channel length of 50 nm exhibit a significant im-
provement (>103) in switching speed indicating potential to be a
promising candidate for high-density synapse array applications.

4.4. Integration of Artificial Synaptic Array and Neuron

The integration of artificial synapse arrays and artificial neurons
can fully exploit the advantages of memristive devices in terms
of area and power consumption. However, due to the difficul-
ties in the heterogeneous integration process and impedance
matching, such attempts are quite challenging. Wang et al.[129]

demonstrated the integration of memristors with diffusive neu-
rons. An overview of the integrated chip, which includes a
1-transistor-1-memristor synaptic array and diffusive memris-
tor neurons, is shown in Figure 16a. The synaptic connec-

tions were created by integrating diffusive and drift memris-
tors with foundry-made transistor arrays using back-end-of-the-
line (BEOL) processes. Duan et al.[149] monolithically integrated
memristive system using passive synaptic array and IMT neu-
ron. Pt/Ta/Ta2O5/Pt synaptic devices and NbOx based neurons
were fabricated together in hardware. Figure 16b provides SEM
images that demonstrate the overall structure of a synapse cross-
bar array with NbOx neurons located in each row. The structural
configurations of both the NbOx neurons and Pt/Ta/Ta2O5/Pt
synapses were evaluated using cross-sectional high-resolution
TEM. Pattern recognition via online learning using a simplified
𝛿-rule and coincidence detection is presented using such system.

4.5. Application Based on Synaptic Array

Based on the Artificial neuron and synapse devices and arrays il-
lustrated above, it is possible to construct neuromorphic comput-
ing systems. Memristor crossbars can accelerate the VMM opera-
tion due to the parallel, in-memory, and analog features of mem-
ristors, which can accelerate a wide range of neural networks.
Additionally, utilizing switchable two-level device states could en-
able the development of logic systems capable of performing ba-
sic logic gate operation and logical cascade. Further, by combin-
ing the memristive system and biological system, it is possible
to use memristors to process biological information. The major-
ity of current studies are focused on memristor-based ANN ac-
celerators, with only a few studies on other types of neuromor-
phic systems. Ionic memristors are considered highly promis-
ing device candidates and attract extensive research interest com-
pared to other device technologies. Passive memristor arrays and
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Figure 16. a) Overview of the integrated 1-transistor-1-memristor synaptic array and diffusive memristor neurons. Adapted with permission.[129] Copy-
right 2018, Springer Nature. b) SEM and TEM images of monolithically integrated memristive system using passive synaptic array and IMT neurons.
Adapted with permission.[149] Copyright 2020, Springer Nature.

1-transistor-1-resistor (1T1R) arrays have been widely employed
in existing studies. In this section, we discuss ANN accelerators
based on memristors and will explore other logical operation ac-
celerator and biological information processing systems enabled
by memristor dynamics respectively.

4.5.1. Synaptic Array Based Neural Network Accelerator

It is widely known that single-layer perceptrons are only capable
of solving linearly separable problems. However, this issue can be
addressed by using perceptron networks with hidden layers. Re-
cently, a multilayer perceptron network with one integrated hid-
den layer was reported, which consisted of two separated passive
memristor crossbars corresponding to synaptic weights in dif-
ferent layers, as shown in Figure 17a.[192] The periphery circuits
and neurons were implemented by discrete CMOS components.
In addition to this multiple crossbar method, synaptic weights
in different layers can also be realized by a large memristor array
with proper partitioning. As shown in Figure 17b, a two-layer per-
ceptron can be constructed by partitioning the monolithic 128 ×
64 1T1R array.[193] This network can be trained online using the
standard MNIST dataset and achieves high classification accu-
racy, demonstrating the potential of online learning to tolerate
device imperfections.

Building 3D circuits using CMOS transistors in the standard
CMOS process is a challenging task because the multilayer struc-
ture does not allow for the construction of a single-crystalline sil-

icon channel. However, constructing 3D memristor circuits is
more achievable since memristors are fabricated in metal lay-
ers. The memristor cells in the multilayer are stacked together,
but this structure does not support 1T1R cells. Therefore, special
techniques are required for fabricating and operating a single cell
without interference.

The process of kernel sliding on an image requires a number
of kernel VMM operations, which can be either time-consuming
or require a large amount of area. However, a 3D memristor ar-
ray provides a solution for conducting VMM operations with high
parallelism and area density. To conduct a convolution kernel op-
eration in a 2D memristor array, the 2D kernel or 2D input data
must be unrolled into 1D vectors.

The demonstration of a 3D memristor circuit included eight
layers of memristors,[179] as shown in Figure 17c,d. This 3D ar-
ray supports efficient convolutional neural networks and video
signal processing, with all convolution VMMs being performed
in parallel. Once the image is input in 2D format, the convolution
result can also be read out in 2D format, as shown in Figure 17e.

4.5.2. Memristor-Based Logical Operation and Logical Cascade

Memristor is an electrical component that exhibits resistive
switching properties with a non-linear behavior. The switching
can either be smooth or abrupt, depending on its physical char-
acteristics. Essentially, a memristor retains its state without any
external influence, meaning that it keeps its state after being
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Figure 17. a) Multilayer perceptron classifier using two passive memristive crossbar arrays. Adapted with permission.[192] Copyright 2018, Springer
Nature. b) Multilayer perceptron network based on partitioned CMOS–memristor hybrid array. Adapted with permission.[193] Copyright 2018, Springer
Nature. c) 3D memristor architecture. d) Cross-sectional schematic of 3D memristor structure. The pillar electrodes (red) are used as input while the
staircase electrodes are output. e) Paradigm of 2D convolution in 3D memristor array. c–e) Adapted with permission.[179] Copyright 2020, Springer
Nature.

SET or RESET unless the voltage difference between its termi-
nals falls within specific constraints. Due to this inherent fea-
ture, the memristor is suitable for logical operation which leads to
in-memory computing. Memristor-based Snider Boolean Logic
model was developed using model shown in Figure 18a. which
considers lower resistance RON as logic 0 and higher resistance
ROFF as logic 1.[194] The logic synthesis process for a crossbar in-
volves selecting which switches to activate and deactivate to im-
plement a specified Boolean function. A memristor switch can
be programmed to operate in two ranges: vertical lines indicate
the minterms and inputs, respectively. If an input is present in
the minterm, the corresponding switch is activated; otherwise,
it is disabled. Results of logic mapping are shown in Figure 18b
using crossbar with two levels.[194]

Figure 18c,d show hardware implementation of a logical unit
using monolithic memtransistor technology based on 2D semi-
conductors of monolayer MoS2.[195] As shown in Figure 18c,
memtransistors are three-terminal devices where the gate ter-
minal enables non-volatile and analog programming of conduc-

tance states, which can then be read by source-to-drain bias. An
area and energy-efficient s-bit generator circuit composed of six
memtransistors, which allows for a tunable probability of obtain-
ing “1” in the bitstream over the range [0,1]. Moreover, s-bit gen-
erators with a 2D-memtransistor-based 2 × 1 MUX consisting
of three NAND gates and one NOT gate, as shown in Figure 18d.
The inherent stochasticity of charge trapping and detrapping pro-
cesses in the gate dielectric of the memtransistor was exploited.
This approach based on three-terminal 2D memtransistors not
only overcomes the limitations of conventional digital CMOS but
also eliminates the need for peripherals. The building blocks of
NAND gates and s-bit generators can be cascaded to perform
complex tasks.

4.5.3. Memristor Based Biological Information Processing Systems

The function of the brain depends on circuits of neurons
that spike with synapses playing a crucial role in integrating
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Figure 18. a) Illustration of the I–V characteristics and switching behavior of a required memristor. b) Logic mapping of a Boolean function on a crossbar
with two levels. a,b) Adapted with permission.[194] Copyright 2018, IEEE. c) 2D schematic and optical image of 2D memtransistor based on monolayer
MoS2. d) 2-input NAND gates and s-bit generators based on 2D memtransistor. c,d) Adapted with permission.[195] Copyright 2022, Springer Nature.

transmission with memory storage and processing. Electron-
ics have made significant strides in emulating neurons and
synapses, and concepts related to brain–computer interfacing,
which connect the brain with brain-inspired devices, are start-
ing to become a reality. Serb et al have reported on memris-
tive connections between the brain and silicon-spiking neurons
that mimic the transmission and plasticity properties of real
synapses.[196] A memristor combined with a thin film of titanium
oxide microelectrode made of metal links a silicon neuron to a
neuron in the rat hippocampus (Figure 19a). Memristive plastic-
ity enables modulation of connection strength, while transmis-
sion occurs through weighted stimuli via the thin film oxide, re-
sulting in responses that resemble excitatory postsynaptic poten-
tials. The reverse link from the brain to silicon is created using a
microelectrode–memristor pair.

Using Pt/TiOx/Pt memristors in different configurations, the
two synapses, ABsyn and BAsyn, connect the presynaptic silicon
neuron (ANpre) to the brain neuron (BN), and BN to the post-
synaptic silicon neuron, ANpost. The two memristors, MR1 and
MR2, emulate plasticity in the two synapses, while the CME and
the patch-clamp electrode mediate electronics-to-BN and BN-to-
electronics signal transmission. With this structure, the ABsyn
and BAsyn synapses respectively enable artificial-to-biological
and biological-to-artificial communication by emulating two fun-
damental functions of biological synapses: signal transmission
and plasticity-mediated signal processing.The operation scheme
can be seen in Figure 19b.

Liu et al. demonstrated the use of memristor-based brain-
machine interfaces for seizure detection.[160] Figure 20a,b illus-
trates their brain-machine interface concept and the system flow
for detecting seizures. They employed memristor arrays to con-
struct four FIR bandpass filters, dividing the input analog neu-
ronal signal into four different frequencies: delta, theta, alpha,
and beta. Biomarkers were then extracted from the filtered sig-
nal, and a memristor-based single-layer perceptron was used for
classifying the brain state. They claimed that their memristor-
based system achieved approximately 400 times power efficiency
compared to traditional CMOS circuits, mainly due to process-
ing analog signals directly in the analog domain and perform-
ing in-memory computations on memristor crossbars, which
saves energy consumption of frequent memory access in tra-
ditional Von Neumann architecture. As proof-of-concept work,
some segments of the whole system, such as biomarker extrac-
tion, were done in software. Li et al. proposed a parallel convo-
lutional neural network using memristor arrays for seizure de-
tection and prediction.[197] To compensate for the accuracy loss
due to digital-analog conversion and non-idealities of memristor
arrays, they adopted quantization-aware training and a weight-
offsetting method. The proposed network includes fewer param-
eters but achieves comparable results to state-of-the-art meth-
ods. By paralleling the different convolutional kernels on separate
memristor arrays, the proposed network’s latency was reduced by
two orders of magnitude compared to the previous memristive–
CMOS architecture.
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Figure 19. a) Sketch of the main components of the hybrid circuit and of the synaptors. b) The brain neurons hybrid network operational scheme. a,b)
Adapted with permission.[196] Copyright 2020, Springer Nature.

Here, we provide an overview of memristive synapses array
and application, as well as their respective advantages and dis-
advantages. We also discuss neural network and logic opera-
tion based on memristive crossbars, as well as biological infor-
mation processing systems that link the memristors and bio-
logical system. Despite the promising progress made thus far,

memristor-based neuromorphic systems are still in their early
stages, and several outstanding challenges remain unresolved in
current studies.

Considerable effort should be devoted to balancing and
benchmarking the network performance, array area, power con-
sumption, as well as manufacturing complexity of the integrated

Figure 20. a) Memristor array is analogous to the biological neural network, and the memristor’s mechanism is similar to the biological synapse.
b) Concept of the brain–machine interface. a,b) Adapted with permission.[160] Copyright 2020, Springer Nature.
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system. Such system-level evaluations will require electronic
design automation tools. Furthermore, it may be necessary
to develop new algorithms or neural networks that can take
advantage of the unique properties and integrate structure of
memristors and array, especially those that are more similar to
the operation principles of the brain.

It should also be noted that studies on artificial neurons
are still very limited, especially for their integration. And
further investigations are certainly needed to obtain high
density artificial neuron elements with biologically plausible
functionalities for the construction of bio-inspired computing
systems.

Memristor-based neuromorphic hardware has been a rapidly
developing area over the last decade, such advancements could
potentially complement existing von Neumann computers and
find extensive applications in big data and artificial intelligence.
However, achieving these goals requires close collaborations be-
tween scientists from a wide range of disciplines.

5. Conclusion

We have presented the common electrochemical fundamentals
of biological and artificial neurons and synapses. It has been
shown that redox-based memristive devices behave in a sim-
ilar way and demonstrates the same basic properties as their
biological counterparts. The ways to design artificial neurons
and synapses using the electrochemical-materials approach have
been discussed. Device component combinations of different
electrode and/or electrolyte materials allow for adjusting and tun-
ing neural and synaptic functionalities.

Using these basic units in more complex circuits has been
highlighted in the examples of the variety of two and three-
terminal devices and arrays. Different architectures and applica-
tions were shown, and the combination and synergy of biological
and artificial neurons were showcased. The prospective for fur-
ther developments and horizon of possible improvements were
discussed.
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